Economic feasibility of flat plate vs evacuated tube solar collectors in a combisystem

PUBLICADO EN:

Mario Nájera-Trejo, Ignacio R. Martín-Domínguez, Jorge A. Escobedo-Bretado

Preparada por:

M.C. Mario Najera Trejo
M.C. Jorge A. Escobedo Bretado
Dr. Ignacio R. Martín Domínguez

CIMAV - Unidad Durango

RESUMEN

Artículo técnico publicado en revista internacional:

Mario Nájera-Trejo, Ignacio R. Martin-Domínguez, Jorge A. Escobedo-Bretado

Economic feasibility of flat plate vs evacuated tube solar collectors in a combisystem

The Solar Heating and Cooling Programme was established in 1977, as one of the first programmes of the International Energy Agency. The Programme’s work is unique in that it is accomplished through the international collaborative effort of experts from Member countries and the European Union.

In 2012 the IEA SHC started a new series of annual conferences on Solar Heating and Cooling for Buildings and Industry. The first three SHC conferences were held in San Francisco, USA, in Freiburg, Germany and in Beijing China. The fourth edition now took place in Istanbul, Turkey. SHC 2015 covered highly focused presentations and discussions on technology developments, material research, system design, standardization, reliability, modeling, control, monitoring, demonstration & pilot installations, and best practice examples for the following topics:

Systems and components
- Solar thermal collectors
- Thermal storage
- Other innovative components and systems
- Performance measurement, durability and reliability

Applications
- Water heating
- Solar space heating and hybrid applications
- District heating
- Solar heat for industrial processes
- Solar refrigeration and solar air conditioning
- Solar architecture
- Building integration and building renovation
- Urban planning and urban transformation
- Solar resource assessment

Market reports and framework conditions
- Market reports
- Regional development and SHC for MENA region
- Standards and certification

233 participants from 37 countries around the world received 93 oral presentations in three parallel tracks. 81 scientific posters were continuously displayed throughout the conference and several keynote lectures from renowned speakers complemented the scientific program.

The proceedings contain 123 manuscripts, which were reviewed by the scientific committee of SHC 2015. We would like to thank all authors for their contributions. Also many thanks to the SHC 2015 committees for their dedicated support throughout the conference organization.
Conference Committee

Bülent Yeşilata, Turkey (Scientific Chair)
Pedro Dias, Belgium (Industry Chair)
Daniel Mugnier, France (Conference Chair)

Lex Bosselaar, The Netherlands
Peter Donat, Germany
Ken Guthrie, Australia
Tao He, China
Doug McClenahan, Canada
Pamela Murphy, United States
Matthias Rommel, Switzerland
Werner Weiss, Austria

Organizing Committee

Kemal Bayraktar, Turkey
Pedro Dias, Belgium
Beatrix Feuerbach, Germany
Daniel Mugnier, France
Bülent Yeşilata, Turkey

Reviewers

Serkan Abbasoğlu, Cyprus
Samuel Abreu, Brazil
Ahmet Korhan Binark, Turkey
Lex Bosselaar, Netherlands
François Boudehenn, France
Christoph Brunner, Austria
Christian Budig, Germany
Hüsamettin Bulut, Turkey
Alberto Coronas, Spain
Yanjun Dai, China
Claudia Dankl, Austria
Piero De Bonis, Belgium
Harald Drück, Germany
Andreas Eckmanns, Switzerland
Roberto Fedrizzi, Italy
Ken Guthrie, Australia
Andreas Häberle, Germany
Jean-Christophe Hadorn, Switzerland
Michel Haller, Switzerland
Andreas Hauer, Germany
Tao He, China
Arif Hepbaşlı, Turkey
Uli Jakob, Germany
Lun Jiang, United States
Henner Kerskes, Germany
Michael Köhl, Germany
Ana Lazaro, Spain
Roberto Lollini, Italy
Daniel Mugnier, France
Les Nelson, United States
Jan Erik Nielsen, Denmark
Philippe Papillon, France
Cedric Paulus, France
Elizabeh Pereira, Brazil
David Renné, United States
Matthias Rommel, Switzerland
Jean-Louis Scartezzini, Switzerland
Paul Strachan, United Kingdom
Costas Travasaros, Greece
Wim van Helden, Austria
Werner Weiss, Austria
Bülent Yeşilata, Turkey
Economic feasibility of flat plate vs evacuated tube solar collectors in a combisystem

Mario Nájera-Trejo**, Ignacio R. Martin-Domínguez*, Jorge A. Escobedo-Bretado*

*Centro de Investigacion en Materiales Avanzados, Victoria #147 zona centro, Durango, Dgo, 34000, México.

Abstract

The aim of this research is to determine the economic feasibility of a solar thermal system used for Domestic Hot Water and Radiant Floor Heating. A two floor house is modeled to create a thermal load. The system design and thermal analysis is studied using TRNSYS. The technical-economic analysis is performed using Microsoft Excel. The optimal type/number of solar thermal collectors and thermal storage size were determined based on the economic figures. The optimum system configuration for the case of evacuated tube system resulted in 8 collectors using a storage relation of 40 L/m² whereas flat plate system resulted in 12 collectors using a storage relation of 50 L/m². The return on investment for the flat plate system was calculated in 9 years and the evacuated tube system resulted in approximately 11 years.

Keywords: Solar Energy; TRNSYS; Combisystem; Radiant Floor; Hot Water; Economic feasibility.

1. Introduction

The National energy balance indicates that the residential sector consumes about 16% of the total energy [1]. However, around half of that energy it is consumed in terms of space and water heating.

Due to economic and technological development higher comfort levels in buildings are constantly being demanded. Although human comfort involves many inputs influenced by physical, physiological, psychological, and other processes, thermal comfort in buildings is a primary objective. As a consequence temperature is an important

* Corresponding author. Tel.: +52-618-811-7259.
E-mail address: mario.najera@cimav.edu.mx
variable for thermal comfort inside a building. Since there are wide temperature variations in weather conditions in the northwest region in Mexico, designing a well-insulated building with an adequate HVAC system represents a challenging work [2].

Radiant floor heating is not a new concept; moreover, it has been used since the very first moments of human reason, when heated rocks were buried below the ground in order to create a comfort condition. Although it is a well-known concept, it is still being studied and discussed all around the world getting more and more popularity for its great number of advantages over the most commonly used heating systems.

The Water council assures that 96.1L of hot water are consumed daily by person. This consume represent the 47% of the total energy used by an entire building [3]. Since water and space heating represents a significant part of house daily energy consumption and moreover the solar radiation over the analyzed region is among the best of the world, an economic analysis is needed to determine the optimum combisystem configuration for this specific application.

Solar thermal behavior of several systems under different thermal loads for heating and domestic hot water has been studied. Leckner and Zmeureanu, presented the performance of a base case solar combisystem, focuses on the search for the optimal configurations of a residential solar combisystem for minimum life cycle cost, life cycle energy use, and life cycle exergy destroyed in Montreal [4].

In 2012 an analysis was performed using 4 different types of construction in two different locations. TRNSYS was used in order to model and simulate the buildings with different thermal loads. The results show that these systems are more cost effective when there is a greater solar availability and are applied in buildings with higher energy demands [5].

Ampatzi and Knight analyzed the importance and consequent complexity of gaining a reliable estimate of the temporal energy demands made of active domestic solar systems. TRNSYS was used to study the influence of weather data, thermal comfort operating schedule, lighting and plug loads, on the predicted thermal energy demands that are to be met by solar thermal combisystems with heat storage. The study demonstrates also that dynamic system simulation tools like TRNSYS can handle the complexity of elaborate building modelling descriptions but highlights the need for more suitable modelling methods which incorporate comprehensive, building-focused interfaces [6].

Nomenclature

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHW</td>
<td>Domestic Hot Water</td>
</tr>
<tr>
<td>RFH</td>
<td>Radiant Floor Heating</td>
</tr>
<tr>
<td>PEX</td>
<td>Crosslinked Polyethylene</td>
</tr>
<tr>
<td>PW</td>
<td>Present Worth</td>
</tr>
<tr>
<td>SPWF</td>
<td>Series Present Worth Factor</td>
</tr>
<tr>
<td>GPWF</td>
<td>Gradient Present Worth Factor</td>
</tr>
<tr>
<td>(i)</td>
<td>Inflation</td>
</tr>
<tr>
<td>(G)</td>
<td>Gradient</td>
</tr>
<tr>
<td>(R)</td>
<td>Uniform Amount</td>
</tr>
<tr>
<td>(Aux)</td>
<td>Auxiliary amount of energy</td>
</tr>
<tr>
<td>(Eff)</td>
<td>Tank-less heater efficiency</td>
</tr>
<tr>
<td>(EC)</td>
<td>Energy Cost</td>
</tr>
<tr>
<td>(\Delta EC)</td>
<td>LPG Annual Cost Interest</td>
</tr>
<tr>
<td>PW</td>
<td>Present Worth</td>
</tr>
<tr>
<td>ROI</td>
<td>Return on Investment</td>
</tr>
</tbody>
</table>
2. Methodology

A solar heating system was designed to provide the required amount of energy for DHW and RFH using solar thermal collectors, heat storage and a residential tank-less water heater (boiler) as an auxiliary support. Cold water reposition from the draw was also considered for the hot water daily usage of 4 occupants.

The system description has been divided into two main parts: The solar energy collection and the RFH/DHW (Fig. 1).

![Proposed system diagram.](image)

2.1. Solar energy collection

Solar Collectors.

Two types of certificated solar collectors were analyzed in this work. A Flat plate solar collector was considered using the technical data of KIoto Clear Energy, FP7.25.0H. On the other hand an evacuated tube solar collector represented by Apricus, AP-30. The slope angle used was 40° in both analysis.

Storage tank.

The storage tank analyzed is a cylindrical-vertical type with three thermal stratification nodes. A maximum height of 2.1 m was considered. The thermal fluid used in the system was water and the tank is a non-pressurized type.

Pump.

An ON/OFF differential controller is used in the solar energy collection. The value of the control signal is chosen as a difference between upper and lower temperatures, which in this case is given by the solar collector outlet temperature and the tank outlet load temperature. This control sets a high limit cut-out of 98°C in the tank.

2.2. RFH/DHW

Building.

The analyzed building is located at latitude 28.65° and longitude -106.15° in Chihuahua, Chihuahua, Mexico. A 32° rotation angle is also being considered for orientation. The first floor was set as one thermal zone of 83.31 m² which includes a kitchen, dining room, living room, vestibule and closet. The second floor was divided into two thermal zones, an 87 m² which includes 2 bedrooms, 1 bathroom, dress room, TV room and service room, additionally a thermal zone of 33 m² which includes the main bedroom and a bathroom as shown in Fig. 2. Materials description is presented in Table 1 and Table 2.
Table 1. Construction Materials and Properties.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Thickness (m)</th>
<th>Conductivity (kJ/h m K)</th>
<th>Capacity (kJ/kg K)</th>
<th>Density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walls</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interior Gypsum</td>
<td>0.015</td>
<td>5</td>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td>Hebel</td>
<td>0.15</td>
<td>0.468</td>
<td>1.36</td>
<td>500</td>
</tr>
<tr>
<td>Exterior Gypsum</td>
<td>0.015</td>
<td>5</td>
<td>1</td>
<td>2000</td>
</tr>
<tr>
<td>Floor</td>
<td>0.005</td>
<td>0.252</td>
<td>1</td>
<td>800</td>
</tr>
<tr>
<td>Concrete C1</td>
<td>0.12</td>
<td>7.56</td>
<td>0.8</td>
<td>2400</td>
</tr>
<tr>
<td>PEX</td>
<td>-</td>
<td>1.368</td>
<td>2.3</td>
<td>951</td>
</tr>
<tr>
<td>Concrete C2</td>
<td>0.12</td>
<td>7.56</td>
<td>0.8</td>
<td>2400</td>
</tr>
<tr>
<td>Isolation</td>
<td>0.3</td>
<td>0.1224</td>
<td>1.4</td>
<td>55</td>
</tr>
<tr>
<td>Roof</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polyurethane</td>
<td>0.051</td>
<td>0.13</td>
<td>1.47</td>
<td>40</td>
</tr>
<tr>
<td>Concrete</td>
<td>0.24</td>
<td>7.56</td>
<td>0.8</td>
<td>2400</td>
</tr>
<tr>
<td>Gypsum</td>
<td>0.015</td>
<td>5</td>
<td>1</td>
<td>2000</td>
</tr>
</tbody>
</table>

Table 2. Window properties.

<table>
<thead>
<tr>
<th>Layer</th>
<th>U Value (W/m² K)</th>
<th>G Value (%/100)</th>
<th>Frame area (%/100)</th>
<th>Frame U Value (kJ/h m² K)</th>
<th>Frame Absorptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Double Glass</td>
<td>1.4</td>
<td>0.589</td>
<td>0.2</td>
<td>8.17</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Radiant floor heating.

The considered habitable surface has been set with radiant floor. The loops under the floor consider PEX tubing filled with water as a thermal fluid. PEX properties are presented in the Table 3. An eight loop manifold it is considered for the first floor, on the other hand the second floor considered an eight loop manifold and an extra four loop manifold due to its bigger floor surface.

Table 3. PEX Properties

<table>
<thead>
<tr>
<th>Tube spacing (m)</th>
<th>Tube external diameter (m)</th>
<th>Tube thickness (m)</th>
<th>Tube thermal conductivity (kJ/h m K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PEX</td>
<td>0.4</td>
<td>0.025</td>
<td>0.0023</td>
</tr>
</tbody>
</table>

Temperature control is performed by the pump operation and a logical function applied on the diverter valve (first floor/second floor) as shown in the diagram of the Fig. 3. The temperature of both floors is reported to the control. The pump will be in operation while time is between 15:00 to 8:00 hours and any temperature is below 21°C. The diverter will apply the result given by a logical function in order to control which floor need a greater hot water flow.

Fig. 3. RFH control diagram

Domestic hot water.

Based on the local water administration (JMAS), the average hot water daily consumption for personal sanitation in Chihuahua is 96.1 L. Four persons are being considered in this analysis, which means a daily consumption of 384.4 L in a draw period between 6:00 and 8:00am every day.

Hot water below 98°C is stored in the tank, nevertheless domestic water temperature is set to 45°C by combining hot water from the storage tank and cold water from the draw. Temperature of the water draw is given by a parabola function which starts from 16°C on January and getting to 23°C in its vertex on the middle of the year.

Fig. 4. DHW control diagram
2.3. Dynamic simulation

The natural variability of parameters such as temperature, relative humidity, irradiance and geographical location, which influence the behavior of a solar thermal system through time, makes the use of a computational tool indispensable. The simulation was performed using TRNSYS 16 and the proposed system integrates a considerable number of modules. The main modules in the simulation are presented in Fig. 5.

Variables intervening in the dynamic simulation of a solar thermal system are generally numerous. For this reason it is necessary to perform a parametric analysis in order to evaluate the results and optimize the system performance. TRNEDIT was used to variate the type and number of solar collectors as well as the storage tank capacity in a parametric table.

2.4. Economic analysis

A solar thermal system implementation is generally intended to reduce the operation costs due to the energy consumption. Therefore, the feasibility of these systems is analyzed considering the equipment cost, operation cost and life span of the solar equipment.

Solar Collectors

The cost considered for the solar thermal collectors includes two types: Flat plate solar collectors and evacuated tube solar collectors. Both models present the SRCC certification and are considered as top efficiency in their kind. The model description and costs are presented in the Table 4.

<table>
<thead>
<tr>
<th>Solar Collector</th>
<th>Company</th>
<th>Model</th>
<th>Cost (USD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evacuated Tube</td>
<td>Apricus</td>
<td>AP-30</td>
<td>680.00</td>
</tr>
<tr>
<td>Flat Plate</td>
<td>Kioto Clear Energy</td>
<td>FP 7.25.0 H</td>
<td>334.00</td>
</tr>
</tbody>
</table>
Storage tank.

A maximum of 3 storage tanks of 2500 liters of maximum capacity each were considered in the analysis. The costs of several storage capacities were consulted using Swimquip information as a reference. According to this information, the cost estimation is calculated based on a polynomial regression developed using Microsoft Excel showed in Fig. 6.

![Storage cost estimation](image)

Fig. 6. Storage cost estimation using information from Swimquip Company.

Operation Cost.

Operation cost is calculated by means of the SPWF (1) which multiplied by R (3) yields the present worth and GPWF (2) which is based on the progressive increase of the energy cost as fossil fuels become more expensive [7].

The resulting present worth value is mainly influenced by the Aux (Parametrically obtained by the simulations), nevertheless Eff (91%), EC (USD$16/GJ), ΔEC (9%) [8], i (4%) and n (25 Years) were also considered.

\[
SPWF = \frac{(1+i)^n - 1}{i(1+i)^n}
\]
\[\text{(1)}\]

\[
GPWF = \frac{1}{i} \left[\frac{(1+i)^n - 1}{(1+i)^n} - \frac{n}{(1+i)^n} \right]
\]
\[\text{(2)}\]

\[
R = \frac{Aux}{Eff \cdot EC}
\]
\[\text{(3)}\]

\[
G = R \cdot \Delta EC
\]
\[\text{(4)}\]

\[
PW = R \cdot SPWF + G \cdot GPWF
\]
\[\text{(5)}\]

3. Results

Once the operation cost is at present worth, it was added to the cost of the solar collectors and the cost of the corresponding storage capacity for each parametric result. The results of the parametric analysis were exported to Microsoft Excel in which dynamic graphs were performed in order to observe the optimized technical-economic system configuration for each type of solar collector. The Fig. 7 and Fig. 8 show the results of the parametric analysis for evacuated tube and flat plate solar collectors respectively. It can be observed that the lower cost corresponds to the optimum system configuration which for the case of evacuated tube analysis resulted in 8 collectors using a storage relation of 40 L/m² whereas flat plate analysis resulted in 12 collectors using a storage relation of 50 L/m².
Fig. 7. Results of evacuated tube solar collectors.

Fig. 8. Results of flat plate solar collectors.
4. Conclusions

It was possible to use TRNSYS as the main tool to determine the optimum technical-economic parameters for a solar heating system used in a combisystem. A summary of Fig. 7 and Fig. 8 for the optimum technical-economic system configuration is presented in Table 5. The last column corresponds to the results of a simulation performed without the use of solar thermal collectors, nevertheless a 500 L tank is considered for DHW.

| Table 5. Optimum technical-economic system configuration |
|---------------------------------|------|-----|-----------|
| Type | Evacuated Tube | Flat Plate | Non-Solar Collector |
| Collectors (Quantity) | 8 | 12 | 0 |
| Tanks (Quantity) | 1 | 1 | 1 |
| Tank (Capacity) | 1408 | 1543| 500 |
| Auxiliary Energy (kJ) | 3.19E+06 | 3.04E+06 | 4.06E+07 |
| Solar Fraction (%) | 92.14| 92.51| 0 |
| Total Cost ($USD) | $9,895.00 | $8,580.00 | $23,571.00 |

The cost calculated for the house heating in a 25 years period with no solar equipment resulted in $USD 23,571.00 which represent 274.7% more compared with the equipment and operation cost of the flat plate project.

Considering the total cost (Equipment plus operation) of a non-solar collector system, the return on investment (ROI) was calculated for both evacuated tube and flat plate systems. Whereas the ROI for the flat plate system was calculated in 9 years, the evacuated tube system resulted in approximately 11 years. Even when the total cost is lower and the ROI is shorter for the flat plate system, it would be convenient to consider installation and maintenance costs in further research.

This simulation can be further used for dimensioning and optimization of a solar combisystem for a different house in a different location.

Acknowledgements.

The authors would like to thank the support given by the project P13 (Laboratorios de pruebas para baja y media temperatura, laboratorio para el diseño e integración de sistemas termo solares asistido por computadora) of the Centro Mexicano de Innovación en Energía Solar (CEMIE-Sol)

References