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a b s t r a c t

The structural, electrical and opto-electronic properties of PbS thin films doped with Liþ

ion were investigated. The crystallite size showed a strong dependence on Li doping, the
crystal size changed from 36 nm to 12 nm due to Li incorporation in PbS. Optical band gap
showed a shift in the range ~1.5e2.3 eV with Li incorporation. Urbach tailing in the band
gap was observed and the Urbach energy has a dependence on the amount of incorporated
Li. SEM images showed a notable change in grain size with Li doping, however the
morphology changes from large grains to agglomerations of smaller grains when doped
with Li. The electric conductivity of the films showed a dependence on Li doping, reached a
maximum value and later decreased for higher Li containing films. The doped samples
showed better photosensitivity.

© 2016 Elsevier Ltd. All rights reserved.
1. Introduction

The band gap of PbS can be tuned in the range 0.4e5.0 eV [1] via size control, which makes it a promising material for
optoelectronic applications including telecommunications [2], LEDs [3], lasers [4], photodetectors [5], and photovoltaic de-
vices [6e9]. Alkali metals are monovalent cations that can substitute Pb2þ supplying free carriers in the structure for
application in solar cells [10]. PbS is a semiconductor material with a Eg of 0.4 eV in bulk, and relatively large exciton Bohr
radius of 18 nm [11], which allows strong quantum confinement of both electrons and holes. The value of the Eg can be simply
controlled by modifying the grain size (GS) and this is achieved by controlling systematically the deposition temperature and
doping [12]. The absorption edge has been found to blue shifted significantly as particle size reduced. Also polycrystalline PbS
thin films showed good photoconductive properties, these properties have been correlated with the synthesis method,
thickness, composition and structure.

Various methods for the preparation of PbS nanocrystals have been reported such as SILAR [13], chemosynthesis [14],
Chemical bath deposition (CBD) [10], etc. In the present report, PbS and PbS:Li filmswere prepared by CBD, which involves the
immersion of a glass substrate in alkaline leadethiourea yielding PbS films of 100e500 nm thickness. CBD method has
ortillo).
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become an attractive technique for the growth of films due to several advantages compared to other techniques, including
scalability to large area, low cost, ability to deposit thin films on different substrates, and flexibility of tuning thin film
properties simply by controlling and adjusting the deposition parameters. In addition CBD allows easy incorporation and
control of the dopants as well as the reproducibility of the samples. In the present work we are reporting CBD preparation of
PbS:Li thin films, and the structural, morphological, electrical, optical, and opto-electronic properties of the deposited films as
a function of Liþ concentration. A systematic investigation of the CBD prepared PbS:Li will enhance the knowledge about the
Liþ incorporation in PbS and associated changes in grain size and quantum confinement effects.

2. Experimental

2.1. Chemical reactions and film deposition

Chemical reactions for the growth of doped and undoped PbS films were determined by employing the reported cell
potential values in basic media. The cell potential and the Gibbs free energy are related through the Nernst equations: DG

� ¼ -
ntε

�
[10]. The slow process at the substrate surface take place predominantly over direct hydrolysis of thiourea in the bulk of

the reaction bath as follows:

SCðNH2Þ2 þ 3OH�⇔CO2�
3 þ S2� þ 7Hþ (1)

�
PbðNH Þ �2þ þ S2�⇔PbSþ 4NH
3 4 3

DGo ¼ þ362:88 KJ (2)
Liþion is generated by the dissociation of Li(OH) according to

LiOH⇔Liþ þ OH�

DGo ¼ þ140:08KJ (3)
PbS doping is happened according to the following reaction

�
PbðNH3Þ4

� 2þ þ S2� þ LiðOHÞ⇔PbSLiþ þ 4NH3 þ OH�

DGo ¼ þ592:96KJ (4)
�

Finally, according to the numerical value of DG > 0, it is concluded that Li is incorporated in the PbS as Liþ ion.
Experimental details for depositing PbS:Li films are similar to those reported in previous work [14,15]. The PbS bath

contained Pb(CH3CO3)2 (0.04M), KOH (0.2 M), NH4NO3 (1.3 M), and SC(NH2)2 (0.3 M). Thin films with eight different volume
levels of Li doping (V[Li]) were obtained by the addition in situ of 1e8 ml of Li(NO3)(0.04M) to the above bath. The different
batches of solutions were stirred well and kept at 40 ± 2 �C during 30 min. The adequate molarity of 0.04 of the doping
solution was determined experimentally on the basis of film adherence. The samples were labelled as PbS for undoped film
and PbS:Li1ePbS:Li8 for doped films, where the numbers 1e8 corresponds to the volume (ml) of Li(NO3) added to the PbS
bath.

2.2. Material characterization

The structural characterization was carried out using the X-ray diffraction (XRD) patterns recorded on a Bruker D8
Discover Diffractometer, using the Cu Ka line. Morphological features were investigated using a Hitachi S5500 FESEM. The
optical absorption spectra were recorded using a UV-Vis-NIR Varian 5000 Spectrophotometer, the photoresponse of the films
were studied using a computerized homebuilt system.

3. Results and discussion

Fig. 1 shows the SEM images of two typical samples; (a) pure PbS, and (b) PbSLi6, which is the film deposited from the PbS
bath containing 6 ml of Li(NO3)(0.04M) as discussed in section 2.1. The effect of doping is very clear, grain size was signifi-
cantly lowered and the film surface feature agglomeration of large numbers of smaller grains. Fig. 1(a) resembles the typical
morphology of PbS obtained by CBD [16,17].

Fig. 2 (a) shows the X-ray diffractograms of pure PbS as well as the PbS:Li films. All the diffraction peaks corresponds to the
PbS as reported previously [17]. According to reference pattern JCPDS 05e0592 the PbS crystallizes in the cubic (zinc-blende)
phase.



Fig. 1. SEM images of: (a) PbS, and (b) PbSLi6.
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The three prominent effects observed in XRD patterns as a result of doping are the shift of diffraction bands, band
broadening, and decrease in intensity. These effects are attributed to the formation of a solid solution [18,19]. The band
broadening can be due to disorder in the crystals, e.g., due to strain and reduction in the grain size (GS). In order to stabilize
the crystal structure the GS is reduced thereby releasing the strain. The inset of Fig. 2 (a) shows the GS vs. V[Li] plot for PbS:Li
samples. The grain size decrease from ~35 nm (PbS) to ~12 nm (PbS:Li8), which is related to the incorporation of Liþ ion in the
crystal lattice. The shift of the (111) diffraction peak towards higher angles (Fig. 2(b)) with Li doping concentration indicates a
decrease in inter-planar distance. A possible reason can be the ionic radius of Liþ dopant; the ionic radii are Pbþ2 ¼ 1.20 Å,
S2� ¼ 1.84 Å and Liþ ¼ 0.73 Å.

Fig. 3 shows the transmittance (T) spectra of the PbS, and PbS:Li films. A notable feature is the shift in absorption edge to
lower wavenumbers as a result of the increase in doping concentration.

The optical absorption coefficient (a) vs. wavelength spectra of PbS and PbS:Li films are shown in Fig. 4 (a). Large blue-shift
of the absorption onset with respect to the bulk PbS indicate the quantum confinement effect [20]. Zhao et al. also observed
this behaviour for the synthetized PbS nanomaterial and speculated that the position-dependent quantum-size effects exist
for relatively large faceted nanocrystals (stars and octahedrons) with regular shapes, resulting in dramatically blue-shifted
excitonic absorptions [21]. PbS have the second excitonic manifold 1Ph/1Pe at ~800 nm (1.4 eV) originating from the four
equivalent L valleys in the Brillouin zone [22]. Fig. 4 (b) is a diagram depicting the transitions of the exciton peaks for PbS
nanocrystals [23]. This excitonic peaks are related to the third, fourth, and fifth excitonic transitions corresponding to the
1De/

1Dh, 2Se/2Sh and 2Pe/2Ph transitions located at ~880, 750, 680, 570 nm [24]. The large Bohr radius of PbS (18 nm)
contributes to the observed optical properties, similar transitions are rarely observed for semiconductors with smaller Bohr



Fig. 2. (a) XRD patterns of PbS and PbS:Li samples, (b) shift of the reflection from (111) plane of PbS due to Li doping. Inset of Fig. 1a shows the variation of grain
size with Li doping.
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radius. It is also possible that these bands correspond to transitions into high-energy levels rather than excitonic transitions.
Chalita et al. reported that depending on PbS particle size the absorption edges are located at ~529, ~760, ~1104, ~1497 nm
when the PbS nanocrystals are of 2.4, 3.6, 5.6, 9.4 nm respectively [25]. The absorption edge clearly shows a blue shift in
contrast to absorption region at ~3200 nm for PbS (Eg ¼ 0.42 eV) [26].



Fig. 3. Transmittance vs. wavelength plots of PbS and PbS:Li films.
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The band gap (Eg) of all the films has been calculated with the help of absorption spectra and the Tauc's relation (ahn) ¼ A
(hneEg)n, where hn is the photon energy, h is Planck's constant, a is the absorption coefficient, A is constant, and n ¼ 1/2 for
direct transitions. The usual method of determining Eg is to plot a graph (ahn)2 vs. hn and determine the intercept of the
straight-line fit at the energy axis [27]. Fig. 5 (a) show the (ahn)2 vs. hn plot of PbS and PbS:Li films, and the obtained Eg values
are plotted in Fig. 5(b) in relation to Li concentration in the bath. It is clear that the band gap shows a strong dependence on Li
concentrationwhich in turn related to a decrease in particle size. Thus, the observed large shift demonstrates the existence of
quantum confinement effect in these films [28]. Similar excitonic effect was observed in CdSe nanocrystallites [29,30]. The
range of Eg measured in our work indicate that the PbS films contain large as well as nanocrystalline particles [31]. Similar
blue shift in Eg values for the films with smaller thickness or GS have been reported for chemically deposited metal chal-
cogenide films [32].

The a near the fundamental absorption edge shows an exponential dependence on the incident photon energy and obeys
the empirical Urbach relation according to: a¼ a0[exp(hg/Eu)] [14], where a0 is a constant and Eu is the Urbach energy, which
characterizes the slope of the exponential region. The Eu absorption edge is formed in the region below band gap. Therefore,
Eu gives the width of the localized states associated with nanocrystalline or amorphous structures in the band gap of the
material. It is believed that the exponential dependence of a on hn can be attributed to random fluctuations of the internal
fields associated with the structural disorder in many nanocrystalline or amorphous materials [33]. Fig. 6(a) shows the ln(a)
vs. hn plots for PbS:Li samples. From Fig. 6 (b) it is clear that the V[Li] has a notable influence on Eu, indicating different types of
disorders in the absorption processes at the long wavelength side of the fundamental absorption edge. Based on these ob-
servations which are similar to that reported [34], it can be concluded that the decrease in Eu is related to the Liþ ion
incorporation and the reduction of the grain size, which in turn resulted in films with more order in the lattice and smaller
density of localized states. The incorporation of foreign ions could introduce trap states at the surface and grain boundaries.
Introduction of Liþ ions increase carrier concentration which induce band tailing in the Eg and scattering due to electron-
impurity interaction [35].

Fig. 7 shows the Eu vs. Eg plot for PbS:Li films. In this plot a decrease in Eu with Eg is seenwhich can be associated with the
existence of stacking faults and grain boundaries. Similar behavior of Eu vs. Eg was reported and related to ionic radii of
dopants [36].

The photocurrent characteristic of the PbS and PbS:Li samples were measured by utilizing two co-planar metallic
contacts painted on the surface of the films. The current measurements were performed in dark and under light by applying
a constant potential of 10 V. The measurement sequence was 20 s in dark, 10 s in light, and 20 s in dark after the illu-
mination period. The I-t data of the different samples measured under identical conditions are shown in Fig. 8. It is clear
that the conductivity increases with Li doping, attains a maximum and decreases (Fig. 9), and in general doped samples are
more photosensitive. As can be seen in Fig. 9, the conductivity has a dependence on V[Li], PbS:Li5 and PbS:Li6 show higher
conductivity. The decrease in conductivity for higher doping levels could be due to recombination and decrease in lifetime
of charges carriers.



Fig. 4. (a) Optical absorption coefficient of the PbS and PbS:Li films, (b) schematic of the quantized energy levels of nanocrystals of PbS.
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The photosensitivity of the samples was estimated using the following relation [37];

S ¼ sL � sdark
sdark

where IL and Idark are the current in light and dark conditions respectively. The photosensivity of different samples as a
function of V[Li] is shown in Fig. 10. There is no noticeable tendency for the photosensitivity with respect to the V[Li]. The
higher photosensitivity of PbS:Li8 is attributed to the high resistivity of the film. It can be mentioned that the Li doping made
the films more photosensitive.



Fig. 5. (a) graph of (ahn)2 vs. hn, and (b) Eg vs. of V[Li] for the PbS:Li films.
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4. Conclusions

In this work we have developed pristine PbS and PbS:Li films through a wet chemical route. The obtained films showed p-
type conductivity, and a strong dependence for all material properties on the amount of Li incorporated in the PbS. The



Fig. 6. (a) Plots of ln(a) vs. hn; (b) Eu vs. V [Li].

M.C. Portillo et al. / Superlattices and Microstructures 98 (2016) 242e252 249
crystallite size changed from 36 nm of the pristine PbS to 12 nm for the Li doped film. The inter-planar distance of PbS
decreased as a result of doping. The SEM images showed that the pristine PbS crystallizes with well-faceted large grains,
however themorphology changes from large grains to agglomerations of smaller grains when dopedwith Li. Optical band gap
was blue shifted from ~1.5 eV to 2.3 eV with Li incorporation, and Urbach tailing in the band gap was observed with a notable
dependence on the amount of incorporated Li. The observed blue shift indicates possible quantum confinement in PbS:Li. The
electric conductivity of the films showed a dependence on Li doping, reached amaximumvalue and later decreased for higher
Li containing films. The doped samples showed better photosensitivity.
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